1 | /* |
---|
2 | Bullet Continuous Collision Detection and Physics Library |
---|
3 | Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ |
---|
4 | |
---|
5 | This software is provided 'as-is', without any express or implied warranty. |
---|
6 | In no event will the authors be held liable for any damages arising from the use of this software. |
---|
7 | Permission is granted to anyone to use this software for any purpose, |
---|
8 | including commercial applications, and to alter it and redistribute it freely, |
---|
9 | subject to the following restrictions: |
---|
10 | |
---|
11 | 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. |
---|
12 | 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. |
---|
13 | 3. This notice may not be removed or altered from any source distribution. |
---|
14 | */ |
---|
15 | |
---|
16 | |
---|
17 | #ifndef BT_OBJECT_ARRAY__ |
---|
18 | #define BT_OBJECT_ARRAY__ |
---|
19 | |
---|
20 | #include "btScalar.h" // has definitions like SIMD_FORCE_INLINE |
---|
21 | #include "btAlignedAllocator.h" |
---|
22 | |
---|
23 | ///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW |
---|
24 | ///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors |
---|
25 | ///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= |
---|
26 | ///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and |
---|
27 | ///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 |
---|
28 | |
---|
29 | #define BT_USE_PLACEMENT_NEW 1 |
---|
30 | //#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... |
---|
31 | #define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful |
---|
32 | |
---|
33 | #ifdef BT_USE_MEMCPY |
---|
34 | #include <memory.h> |
---|
35 | #include <string.h> |
---|
36 | #endif //BT_USE_MEMCPY |
---|
37 | |
---|
38 | #ifdef BT_USE_PLACEMENT_NEW |
---|
39 | #include <new> //for placement new |
---|
40 | #endif //BT_USE_PLACEMENT_NEW |
---|
41 | |
---|
42 | |
---|
43 | ///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods |
---|
44 | ///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data |
---|
45 | template <typename T> |
---|
46 | //template <class T> |
---|
47 | class btAlignedObjectArray |
---|
48 | { |
---|
49 | btAlignedAllocator<T , 16> m_allocator; |
---|
50 | |
---|
51 | int m_size; |
---|
52 | int m_capacity; |
---|
53 | T* m_data; |
---|
54 | //PCK: added this line |
---|
55 | bool m_ownsMemory; |
---|
56 | |
---|
57 | #ifdef BT_ALLOW_ARRAY_COPY_OPERATOR |
---|
58 | public: |
---|
59 | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other) |
---|
60 | { |
---|
61 | copyFromArray(other); |
---|
62 | return *this; |
---|
63 | } |
---|
64 | #else//BT_ALLOW_ARRAY_COPY_OPERATOR |
---|
65 | private: |
---|
66 | SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other); |
---|
67 | #endif//BT_ALLOW_ARRAY_COPY_OPERATOR |
---|
68 | |
---|
69 | protected: |
---|
70 | SIMD_FORCE_INLINE int allocSize(int size) |
---|
71 | { |
---|
72 | return (size ? size*2 : 1); |
---|
73 | } |
---|
74 | SIMD_FORCE_INLINE void copy(int start,int end, T* dest) const |
---|
75 | { |
---|
76 | int i; |
---|
77 | for (i=start;i<end;++i) |
---|
78 | #ifdef BT_USE_PLACEMENT_NEW |
---|
79 | new (&dest[i]) T(m_data[i]); |
---|
80 | #else |
---|
81 | dest[i] = m_data[i]; |
---|
82 | #endif //BT_USE_PLACEMENT_NEW |
---|
83 | } |
---|
84 | |
---|
85 | SIMD_FORCE_INLINE void init() |
---|
86 | { |
---|
87 | //PCK: added this line |
---|
88 | m_ownsMemory = true; |
---|
89 | m_data = 0; |
---|
90 | m_size = 0; |
---|
91 | m_capacity = 0; |
---|
92 | } |
---|
93 | SIMD_FORCE_INLINE void destroy(int first,int last) |
---|
94 | { |
---|
95 | int i; |
---|
96 | for (i=first; i<last;i++) |
---|
97 | { |
---|
98 | m_data[i].~T(); |
---|
99 | } |
---|
100 | } |
---|
101 | |
---|
102 | SIMD_FORCE_INLINE void* allocate(int size) |
---|
103 | { |
---|
104 | if (size) |
---|
105 | return m_allocator.allocate(size); |
---|
106 | return 0; |
---|
107 | } |
---|
108 | |
---|
109 | SIMD_FORCE_INLINE void deallocate() |
---|
110 | { |
---|
111 | if(m_data) { |
---|
112 | //PCK: enclosed the deallocation in this block |
---|
113 | if (m_ownsMemory) |
---|
114 | { |
---|
115 | m_allocator.deallocate(m_data); |
---|
116 | } |
---|
117 | m_data = 0; |
---|
118 | } |
---|
119 | } |
---|
120 | |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | public: |
---|
125 | |
---|
126 | btAlignedObjectArray() |
---|
127 | { |
---|
128 | init(); |
---|
129 | } |
---|
130 | |
---|
131 | ~btAlignedObjectArray() |
---|
132 | { |
---|
133 | clear(); |
---|
134 | } |
---|
135 | |
---|
136 | ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead. |
---|
137 | btAlignedObjectArray(const btAlignedObjectArray& otherArray) |
---|
138 | { |
---|
139 | init(); |
---|
140 | |
---|
141 | int otherSize = otherArray.size(); |
---|
142 | resize (otherSize); |
---|
143 | otherArray.copy(0, otherSize, m_data); |
---|
144 | } |
---|
145 | |
---|
146 | |
---|
147 | |
---|
148 | /// return the number of elements in the array |
---|
149 | SIMD_FORCE_INLINE int size() const |
---|
150 | { |
---|
151 | return m_size; |
---|
152 | } |
---|
153 | |
---|
154 | SIMD_FORCE_INLINE const T& at(int n) const |
---|
155 | { |
---|
156 | btAssert(n>=0); |
---|
157 | btAssert(n<size()); |
---|
158 | return m_data[n]; |
---|
159 | } |
---|
160 | |
---|
161 | SIMD_FORCE_INLINE T& at(int n) |
---|
162 | { |
---|
163 | btAssert(n>=0); |
---|
164 | btAssert(n<size()); |
---|
165 | return m_data[n]; |
---|
166 | } |
---|
167 | |
---|
168 | SIMD_FORCE_INLINE const T& operator[](int n) const |
---|
169 | { |
---|
170 | btAssert(n>=0); |
---|
171 | btAssert(n<size()); |
---|
172 | return m_data[n]; |
---|
173 | } |
---|
174 | |
---|
175 | SIMD_FORCE_INLINE T& operator[](int n) |
---|
176 | { |
---|
177 | btAssert(n>=0); |
---|
178 | btAssert(n<size()); |
---|
179 | return m_data[n]; |
---|
180 | } |
---|
181 | |
---|
182 | |
---|
183 | ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. |
---|
184 | SIMD_FORCE_INLINE void clear() |
---|
185 | { |
---|
186 | destroy(0,size()); |
---|
187 | |
---|
188 | deallocate(); |
---|
189 | |
---|
190 | init(); |
---|
191 | } |
---|
192 | |
---|
193 | SIMD_FORCE_INLINE void pop_back() |
---|
194 | { |
---|
195 | btAssert(m_size>0); |
---|
196 | m_size--; |
---|
197 | m_data[m_size].~T(); |
---|
198 | } |
---|
199 | |
---|
200 | ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. |
---|
201 | ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. |
---|
202 | SIMD_FORCE_INLINE void resize(int newsize, const T& fillData=T()) |
---|
203 | { |
---|
204 | int curSize = size(); |
---|
205 | |
---|
206 | if (newsize < curSize) |
---|
207 | { |
---|
208 | for(int i = newsize; i < curSize; i++) |
---|
209 | { |
---|
210 | m_data[i].~T(); |
---|
211 | } |
---|
212 | } else |
---|
213 | { |
---|
214 | if (newsize > size()) |
---|
215 | { |
---|
216 | reserve(newsize); |
---|
217 | } |
---|
218 | #ifdef BT_USE_PLACEMENT_NEW |
---|
219 | for (int i=curSize;i<newsize;i++) |
---|
220 | { |
---|
221 | new ( &m_data[i]) T(fillData); |
---|
222 | } |
---|
223 | #endif //BT_USE_PLACEMENT_NEW |
---|
224 | |
---|
225 | } |
---|
226 | |
---|
227 | m_size = newsize; |
---|
228 | } |
---|
229 | |
---|
230 | SIMD_FORCE_INLINE T& expandNonInitializing( ) |
---|
231 | { |
---|
232 | int sz = size(); |
---|
233 | if( sz == capacity() ) |
---|
234 | { |
---|
235 | reserve( allocSize(size()) ); |
---|
236 | } |
---|
237 | m_size++; |
---|
238 | |
---|
239 | return m_data[sz]; |
---|
240 | } |
---|
241 | |
---|
242 | |
---|
243 | SIMD_FORCE_INLINE T& expand( const T& fillValue=T()) |
---|
244 | { |
---|
245 | int sz = size(); |
---|
246 | if( sz == capacity() ) |
---|
247 | { |
---|
248 | reserve( allocSize(size()) ); |
---|
249 | } |
---|
250 | m_size++; |
---|
251 | #ifdef BT_USE_PLACEMENT_NEW |
---|
252 | new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) |
---|
253 | #endif |
---|
254 | |
---|
255 | return m_data[sz]; |
---|
256 | } |
---|
257 | |
---|
258 | |
---|
259 | SIMD_FORCE_INLINE void push_back(const T& _Val) |
---|
260 | { |
---|
261 | int sz = size(); |
---|
262 | if( sz == capacity() ) |
---|
263 | { |
---|
264 | reserve( allocSize(size()) ); |
---|
265 | } |
---|
266 | |
---|
267 | #ifdef BT_USE_PLACEMENT_NEW |
---|
268 | new ( &m_data[m_size] ) T(_Val); |
---|
269 | #else |
---|
270 | m_data[size()] = _Val; |
---|
271 | #endif //BT_USE_PLACEMENT_NEW |
---|
272 | |
---|
273 | m_size++; |
---|
274 | } |
---|
275 | |
---|
276 | |
---|
277 | /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() |
---|
278 | SIMD_FORCE_INLINE int capacity() const |
---|
279 | { |
---|
280 | return m_capacity; |
---|
281 | } |
---|
282 | |
---|
283 | SIMD_FORCE_INLINE void reserve(int _Count) |
---|
284 | { // determine new minimum length of allocated storage |
---|
285 | if (capacity() < _Count) |
---|
286 | { // not enough room, reallocate |
---|
287 | T* s = (T*)allocate(_Count); |
---|
288 | |
---|
289 | copy(0, size(), s); |
---|
290 | |
---|
291 | destroy(0,size()); |
---|
292 | |
---|
293 | deallocate(); |
---|
294 | |
---|
295 | //PCK: added this line |
---|
296 | m_ownsMemory = true; |
---|
297 | |
---|
298 | m_data = s; |
---|
299 | |
---|
300 | m_capacity = _Count; |
---|
301 | |
---|
302 | } |
---|
303 | } |
---|
304 | |
---|
305 | |
---|
306 | class less |
---|
307 | { |
---|
308 | public: |
---|
309 | |
---|
310 | bool operator() ( const T& a, const T& b ) |
---|
311 | { |
---|
312 | return ( a < b ); |
---|
313 | } |
---|
314 | }; |
---|
315 | |
---|
316 | |
---|
317 | template <typename L> |
---|
318 | void quickSortInternal(const L& CompareFunc,int lo, int hi) |
---|
319 | { |
---|
320 | // lo is the lower index, hi is the upper index |
---|
321 | // of the region of array a that is to be sorted |
---|
322 | int i=lo, j=hi; |
---|
323 | T x=m_data[(lo+hi)/2]; |
---|
324 | |
---|
325 | // partition |
---|
326 | do |
---|
327 | { |
---|
328 | while (CompareFunc(m_data[i],x)) |
---|
329 | i++; |
---|
330 | while (CompareFunc(x,m_data[j])) |
---|
331 | j--; |
---|
332 | if (i<=j) |
---|
333 | { |
---|
334 | swap(i,j); |
---|
335 | i++; j--; |
---|
336 | } |
---|
337 | } while (i<=j); |
---|
338 | |
---|
339 | // recursion |
---|
340 | if (lo<j) |
---|
341 | quickSortInternal( CompareFunc, lo, j); |
---|
342 | if (i<hi) |
---|
343 | quickSortInternal( CompareFunc, i, hi); |
---|
344 | } |
---|
345 | |
---|
346 | |
---|
347 | template <typename L> |
---|
348 | void quickSort(const L& CompareFunc) |
---|
349 | { |
---|
350 | //don't sort 0 or 1 elements |
---|
351 | if (size()>1) |
---|
352 | { |
---|
353 | quickSortInternal(CompareFunc,0,size()-1); |
---|
354 | } |
---|
355 | } |
---|
356 | |
---|
357 | |
---|
358 | ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ |
---|
359 | template <typename L> |
---|
360 | void downHeap(T *pArr, int k, int n, const L& CompareFunc) |
---|
361 | { |
---|
362 | /* PRE: a[k+1..N] is a heap */ |
---|
363 | /* POST: a[k..N] is a heap */ |
---|
364 | |
---|
365 | T temp = pArr[k - 1]; |
---|
366 | /* k has child(s) */ |
---|
367 | while (k <= n/2) |
---|
368 | { |
---|
369 | int child = 2*k; |
---|
370 | |
---|
371 | if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child])) |
---|
372 | { |
---|
373 | child++; |
---|
374 | } |
---|
375 | /* pick larger child */ |
---|
376 | if (CompareFunc(temp , pArr[child - 1])) |
---|
377 | { |
---|
378 | /* move child up */ |
---|
379 | pArr[k - 1] = pArr[child - 1]; |
---|
380 | k = child; |
---|
381 | } |
---|
382 | else |
---|
383 | { |
---|
384 | break; |
---|
385 | } |
---|
386 | } |
---|
387 | pArr[k - 1] = temp; |
---|
388 | } /*downHeap*/ |
---|
389 | |
---|
390 | void swap(int index0,int index1) |
---|
391 | { |
---|
392 | #ifdef BT_USE_MEMCPY |
---|
393 | char temp[sizeof(T)]; |
---|
394 | memcpy(temp,&m_data[index0],sizeof(T)); |
---|
395 | memcpy(&m_data[index0],&m_data[index1],sizeof(T)); |
---|
396 | memcpy(&m_data[index1],temp,sizeof(T)); |
---|
397 | #else |
---|
398 | T temp = m_data[index0]; |
---|
399 | m_data[index0] = m_data[index1]; |
---|
400 | m_data[index1] = temp; |
---|
401 | #endif //BT_USE_PLACEMENT_NEW |
---|
402 | |
---|
403 | } |
---|
404 | |
---|
405 | template <typename L> |
---|
406 | void heapSort(const L& CompareFunc) |
---|
407 | { |
---|
408 | /* sort a[0..N-1], N.B. 0 to N-1 */ |
---|
409 | int k; |
---|
410 | int n = m_size; |
---|
411 | for (k = n/2; k > 0; k--) |
---|
412 | { |
---|
413 | downHeap(m_data, k, n, CompareFunc); |
---|
414 | } |
---|
415 | |
---|
416 | /* a[1..N] is now a heap */ |
---|
417 | while ( n>=1 ) |
---|
418 | { |
---|
419 | swap(0,n-1); /* largest of a[0..n-1] */ |
---|
420 | |
---|
421 | |
---|
422 | n = n - 1; |
---|
423 | /* restore a[1..i-1] heap */ |
---|
424 | downHeap(m_data, 1, n, CompareFunc); |
---|
425 | } |
---|
426 | } |
---|
427 | |
---|
428 | ///non-recursive binary search, assumes sorted array |
---|
429 | int findBinarySearch(const T& key) const |
---|
430 | { |
---|
431 | int first = 0; |
---|
432 | int last = size()-1; |
---|
433 | |
---|
434 | //assume sorted array |
---|
435 | while (first <= last) { |
---|
436 | int mid = (first + last) / 2; // compute mid point. |
---|
437 | if (key > m_data[mid]) |
---|
438 | first = mid + 1; // repeat search in top half. |
---|
439 | else if (key < m_data[mid]) |
---|
440 | last = mid - 1; // repeat search in bottom half. |
---|
441 | else |
---|
442 | return mid; // found it. return position ///// |
---|
443 | } |
---|
444 | return size(); // failed to find key |
---|
445 | } |
---|
446 | |
---|
447 | |
---|
448 | int findLinearSearch(const T& key) const |
---|
449 | { |
---|
450 | int index=size(); |
---|
451 | int i; |
---|
452 | |
---|
453 | for (i=0;i<size();i++) |
---|
454 | { |
---|
455 | if (m_data[i] == key) |
---|
456 | { |
---|
457 | index = i; |
---|
458 | break; |
---|
459 | } |
---|
460 | } |
---|
461 | return index; |
---|
462 | } |
---|
463 | |
---|
464 | void remove(const T& key) |
---|
465 | { |
---|
466 | |
---|
467 | int findIndex = findLinearSearch(key); |
---|
468 | if (findIndex<size()) |
---|
469 | { |
---|
470 | swap( findIndex,size()-1); |
---|
471 | pop_back(); |
---|
472 | } |
---|
473 | } |
---|
474 | |
---|
475 | //PCK: whole function |
---|
476 | void initializeFromBuffer(void *buffer, int size, int capacity) |
---|
477 | { |
---|
478 | clear(); |
---|
479 | m_ownsMemory = false; |
---|
480 | m_data = (T*)buffer; |
---|
481 | m_size = size; |
---|
482 | m_capacity = capacity; |
---|
483 | } |
---|
484 | |
---|
485 | void copyFromArray(const btAlignedObjectArray& otherArray) |
---|
486 | { |
---|
487 | int otherSize = otherArray.size(); |
---|
488 | resize (otherSize); |
---|
489 | otherArray.copy(0, otherSize, m_data); |
---|
490 | } |
---|
491 | |
---|
492 | }; |
---|
493 | |
---|
494 | #endif //BT_OBJECT_ARRAY__ |
---|